
GamingAnywhere: An Open Cloud Gaming System

Chun-Ying Huang1, Cheng-Hsin Hsu2, Yu-Chun Chang3,4, and Kuan-Ta Chen3

1Department of Computer Science, National Taiwan Ocean University
2Department of Computer Science, National Tsing Hua University

3Institute of Information Science, Academia Sinica
4Department of Electrical Engineering, National Taiwan University

chuang@ntou.edu.tw, chsu@cs.nthu.edu.tw, congo@iis.sinica.edu.tw, ktchen@iis.sinica.edu.tw

ABSTRACT

Cloud gaming is a promising application of the rapidly ex-
panding cloud computing infrastructure. Existing cloud
gaming systems, however, are closed-source with proprietary
protocols, which raises the bars to setting up testbeds for
experiencing cloud games. In this paper, we present a com-
plete cloud gaming system, called GamingAnywhere, which
is to the best of our knowledge the first open cloud gam-
ing system. In addition to its openness, we design Gaming-
Anywhere for high extensibility, portability, and reconfigura-
bility. We implement GamingAnywhere onWindows, Linux,
and OS X, while its client can be readily ported to other
OS’s, including iOS and Android. We conduct extensive ex-
periments to evaluate the performance of GamingAnywhere,
and compare it against two well-known cloud gaming sys-
tems: OnLive and StreamMyGame. Our experimental re-
sults indicate that GamingAnywhere is efficient and pro-
vides high responsiveness and video quality. For example,
GamingAnywhere yields a per-frame processing delay of 34
ms, which is 3+ and 10+ times shorter than OnLive and
StreamMyGame, respectively. Our experiments also reveal
that all these performance gains are achieved without the
expense of higher network loads; in fact, GamingAnywhere
incurs less network traffic. The proposed GamingAnywhere
can be employed by the researchers, game developers, ser-
vice providers, and end users for setting up cloud gaming
testbeds, which, we believe, will stimulate more research in-
novations on cloud gaming systems.

Categories and Subject Descriptors: H.5[Information
Systems Applications]: Multimedia Information Systems

General Terms: Design, Measurement

1. INTRODUCTION
The video game market has been an important sector of

both the software and entertainment industries, e.g., the
global market of video games is expected to grow from 66
billion US dollars in 2010 to 81 billion in 2016 [27]. Another

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’13, February 26-March 1, 2013, Oslo, Norway.
Copyright 2013 ACM 978-1-4503-1894-5/13/02 ...$10.00.

market research [11] further breaks down the market growth
into three categories: boxed-games, online-sold games, and
cloud games. Cloud gaming systems render the game scenes
on cloud servers and stream the encoded game scenes to thin
clients over broadband networks. The control events, from
mice, keyboards, joysticks, and touchscreens are transmit-
ted from the thin clients back to the cloud servers. Among
the three categories, it is the cloud games market that is
expected to expand the most: nine times over the period of
2011 to 2017, at which time it is forecast to reach 8 billion
US dollars [11].

Cloud gaming systems attract both users and game de-
velopers for many reasons. In particular, cloud gaming sys-
tems: (i) free users from upgrading their hardware for the
latest games, (ii) allow users to play the same games on dif-
ferent platforms, including PCs, laptops, tablets, and smart-
phones, and (iii) enable users to play more games by reduc-
ing the hardware/software costs. Cloud gaming systems also
allow game developers to: (i) support more platforms, (ii)
ease hardware/software incompatibility issues, (iii) reduce
the production costs, and (iv) increase the net revenues. In
fact, the market potential of cloud gaming is tremendous and
well recognized, as evidenced by Sony’s recent acquisition [9]
of Gaikai [15], which is a cloud gaming service provider.

However, providing a good user experience in cloud gam-
ing systems is not an easy task, because users expect both
high-quality videos and low response delays. The response
delay refers to the time difference between a user input re-
ceived by the thin client and the resulting in-game action
appearing on the thin client’s screen. Higher-quality videos,
such as 720p (1280x720) at 50 fps (frame-per-second), inher-
ently result in higher bit rates, which render the cloud gam-
ing systems vulnerable to higher network latency, and thus
longer response delay. Since a long response delay results in
degraded user experience, it may turn the users away from
the cloud gaming systems. User studies, for example, show
that networked games require short response delay, even as
low as 100 ms, e.g., for first-person shooter games [8]. Given
that each game scene has to go through the real-time video
streaming pipeline of rendering, encoding, transmission, de-
coding, and displaying, designing a cloud gaming system to
meet the stringent response delay requirements, while still
achieving high video quality is very challenging.

One simple approach to support cloud gaming is to em-
ploy generic desktop streaming thin clients, such as Log-
MeIn [24], TeamViewer [36], and UltraVNC [38]. However,
a measurement study [4] reveals that generic thin clients
achieve low frame rates, on average 13.5 fps, which clearly

lead to sluggish game plays. A better user experience is
possible with thin clients specifically designed for cloud gam-
ing, e.g., Gaikai [15], OnLive [29], and StreamMyGame [34].
Nevertheless, another measurement study [5] demonstrates
that these cloud gaming systems also suffer from non-trivial
response time. Even under a strong assumption of zero net-
work latency, at least 134 ms and 375 ms average response
delays are observed in OnLive and StreamMyGame, respec-
tively. The measurement results [4, 5] indicate that the prob-
lem of designing cloud gaming systems for high video quality
and fast responsiveness remains open.
In this work, we design, implement, and evaluate a cloud

gaming system called GamingAnywhere. GamingAnywhere
follows three design goals. First, in contrast to OnLive and
StreamMyGame, GamingAnywhere is an open system, in
the sense that a component of the video streaming pipeline
can be easily replaced by another component implement-
ing a different algorithm, standard, or protocol. For ex-
ample, GamingAnywhere by default employs x264 [44], a
highly-optimized H.264/AVC encoder, to encode captured
raw videos. To expand GamingAnywhere for stereoscopic
games, an H.264/MVC encoder may be plugged into it with-
out significant changes. Since GamingAnywhere is open,
various algorithms, standards, protocols, and system param-
eters can be rigorously evaluated using real experiments,
which is impossible on proprietary cloud gaming systems.
Second, GamingAnywhere is cross-platform, and is currently
available on Windows, Linux, and OS X. This is made
possible largely due to the modularized design of Gaming-
Anywhere. Third, GamingAnywhere has been designed to
be efficient, as can be seen, for example, in its minimizing of
time and space overhead by using shared circular buffers to
reduce the number of memory copy operations. These opti-
mizations allow GamingAnywhere to provide a high-quality
gaming experience with short response delay. In particular,
on a commodity Intel i7 server, GamingAnywhere delivers
real-time 720p videos at ≥ 35 fps, which is equivalent to less
than 28.6 ms of processing time for each video frame, with a
video quality significantly higher than that of existing cloud
gaming systems. In particular, GamingAnywhere achieves
a video quality 3 dB and 19 dB higher than that of OnLive
and StreamMyGame, in terms of average Peak Signal-to-
Noise Ratio (PSNR). PSNR is popular video quality metric,
which is inversely related to mean-squared error [40, p. 29].
This paper makes two main contributions.

• We propose an open cloud gaming system, Gaming-
Anywhere, which can be used by cloud gaming devel-
opers, cloud service providers, and system researchers
for setting up a complete cloud gaming testbed. To
the best of our knowledge, this is the first open cloud
gaming testbed in the literature.

• We conduct extensive experiments using Gaming-
Anywhere to quantify its performance and overhead.
We also derive the optimal setups of system parame-
ters, which in turn allow users to install and try out
GamingAnywhere on their own servers.

The rest of this paper is organized as follows. Section 2
surveys related work in the literature. Section 3 presents
the design goals and Section 4 depicts the system architec-
ture. This is followed by the detailed implementations in
Section 5. Section 6 gives the performance evaluation re-
sults. We conclude the paper in Section 7.

2. RELATED WORK
In this section, we survey the existing cloud gaming sys-

tems and the proposals for measuring their performance.

2.1 Cloud Gaming Systems
Cloud gaming systems, or more generally real-time re-

mote rendering systems, have been studied in the litera-
ture. We classify these systems into three categories: (i) 3D
graphics streaming [12, 19], (ii) video streaming [18, 42], and
(iii) video streaming with post-rendering operations [16, 33].
These three approaches differ from one another in how they
divide the workload between the cloud servers and clients.

With the 3D graphics streaming approach [12, 19], the
cloud servers intercept the graphics commands, compress
the commands, and stream them to the clients. The clients
then render the game scenes using its graphics chips based
on graphics command sets such as OpenGL and Direct3D.
The clients’ graphics chips must be not only compatible with
the streamed graphics commands but also powerful enough
to render the game scenes in high quality and real time. 3D
graphics streaming approach does not use the graphics chips
on the cloud servers, thereby allowing each cloud server to
concurrently support multiple clients. However, as this ap-
proach imposes more workload on the clients, it is less suit-
able for resource-constrained devices, such as mobile devices
and set-top boxes.

In contrast, with the video streaming approach [18, 42]
the cloud servers render the 3D graphics commands into
2D videos, compress the videos, and stream them to the
clients. The clients then decode and display the video
streams. The decoding can be done using low-cost video
decoder chips massively produced for consumer electron-
ics. This approach relieves the clients from computationally-
intensive 3D graphics rendering and is ideal for thin clients
on resource-constrained devices. Since the video streaming
approach does not rely on specific 3D chips, the same thin
clients can be readily ported to different platforms, which
are potentially GPU-less.

The approach of video streaming with post-rendering op-
erations [16, 33] is somewhere between the 3D graphics
streaming and video streaming. While the 3D graphics
rendering is performed at the cloud servers, some post-
rendering operations are optionally done on the thin clients
for augmenting motions, lighting, and textures [6]. These
post-rendering operations have low computational complex-
ity and run in real time without GPUs.

Similar to the proprietary cloud gaming systems [15,
29, 34], the proposed GamingAnywhere employs the video
streaming approach for lower loads on the thin clients. Dif-
fering from other systems [18, 42] in the literature, Gam-
ingAnywhere is open, modularized, cross-platform, and effi-
cient. To the best of our knowledge, GamingAnywhere is the
first complete system of its kind, and is of interests for re-
searchers, cloud gaming service providers, game developers,
and end users. Last, GamingAnywhere is flexible and can
be extended to evaluate the potentials and performance im-
pact of post-rendering operations. This is one of our future
tasks.

2.2 Measuring the Performance of Cloud
Gaming Systems

Measuring the performance of general-purpose thin client
systems has been considered in the literature [20, 26, 30,

37, 43]. The slow-motion benchmarking [20, 26] runs a
slow-motion version of an application on the server, and
collects network packet traces between the server and thin
client. It then analyzes the traces for the performance of
the thin client system. However, slow-motion benchmark-
ing augments the execution speed of applications, and is
thus less suitable to real-time applications, including cloud
games. The performances of different thin clients are inves-
tigated, including X Window [30], Windows NT Terminal
Service [43], and VNC (Virtual Network Computing) [37].
Packard and Gettys [30] analyze the network traces between
the X Window server and client, under diverse network con-
ditions. The traces are used to compare the compression
ratios of different compression mechanisms, and to quantify
the effects of network impairments. Wong and Seltzer [43]
measure the performance of the Windows NT Terminal Ser-
vice, in terms of process, memory, and network bandwidth.
The Windows NT Terminal Service is found to be gener-
ally efficient with multi-user access, but the response delay
is degraded when the system load is high. Tolia et al. [37]
quantify the performance of several applications running on
a VNC server, which is connected to a VNC thin client via
a network with diverse round-trip times (RTT). It is deter-
mined that the response delay of these applications highly
depends on the degree of the application’s interactivity and
network RTT. However, because the aforementioned tech-
niques [20, 26, 30, 37, 43] are designed for general-purpose
thin clients, the performance metrics they consider are not
applicable to cloud gaming systems, which impose stringent
time constraints.
Recently, the performance and potentials of thin client

gaming [4, 5, 7, 22] has been the subject of research. Chang
et al.’s [4] methodology to study the performance of games
on general-purpose thin clients has been employed to eval-
uate several popular thin clients, including LogMeIn [24],
TeamViewer [36], and UltraVNC [38]. Chang et al. es-
tablish that player performance and Quality-of-Experience
(QoE) depend on video quality and frame rates. It is ob-
served that the general-purpose thin clients cannot support
cloud games given that the achieved frame rate is as low as
9.7 fps [4]. Chen et al. [5] propose another methodology to
quantify the response delay, which is even more critical to
cloud games [8, 17, 46]. Two proprietary cloud gaming sys-
tems, OnLive [29] and StreamMyGame [34], are evaluated
using this methodology. Their evaluation results reveal that
StreamMyGame suffers from a high response delay, while
OnLive achieves reasonable response delay. Chen et al. par-
tially attribute the performance edge of OnLive to its cus-
tomized hardware platform, which however entails a high
infrastructure cost [28]. In addition, Lee et al. [22] evaluate
whether computer games are equally suitable to the cloud
gaming setting and find that some games are more “com-
patible” with cloud gaming than others. Meanwhile, Choy
et al. [7] evaluate whether a wide-scale cloud gaming infras-
tructure is feasible on the current Internet and propose a
smart-edge solution to mitigate user-perceived delays when
playing on the cloud.
In light of the literature review, the current paper tack-

les the following question: Can we do better than OnLive
using commodity desktops? We employs the measurement
methodologies proposed in [5] to compare the proposed
GamingAnywhere against the well-known cloud gaming sys-
tems of OnLive [29] and StreamMyGame [34].

3. DESIGN OBJECTIVES
GamingAnywhere aims to provide an open platform for re-

searchers to develop and study real-time multimedia stream-
ing applications in the cloud. The design objectives of Gam-
ingAnywhere include:

1. Extensibility : GamingAnywhere adopts a modularized
design. Both platform-dependent components such as
audio and video capturing and platform-independent
components such as codecs and network protocols can
be easily modified or replaced. Developers should be
able to follow the programming interfaces of modules
in GamingAnywhere to extend the capabilities of the
system. It is not limited only to games, and any real-
time multimedia streaming application such as live
casting can be done using the same system architec-
ture.

2. Portability : In addition to desktops, mobile devices
are now becoming one of the most potential clients of
cloud services as wireless networks are getting increas-
ingly more popular. For this reason, we maintain the
principle of portability when designing and implement-
ing GamingAnywhere. Currently the server supports
Windows and Linux, while the client supports Win-
dows, Linux, and OS X. New platforms can be easily
included by replacing platform-dependent components
in GamingAnywhere. Besides the easily replaceable
modules, the external components leveraged by Gam-
ingAnywhere are highly portable as well. This also
makes GamingAnywhere easier to be ported to mobile
devices. For these details please refer to Section 5.

3. Configurability : A system researcher may conduct ex-
periments for real-time multimedia streaming applica-
tions with diverse system parameters. A large number
of built-in audio and video codecs are supported by
GamingAnywhere. In addition, GamingAnywhere ex-
ports all available configurations to users so that it is
possible to try out the best combinations of parame-
ters by simply editing a text-based configuration file
and fitting the system into a customized usage sce-
nario.

4. Openness: GamingAnywhere is publicly available
at http://gaminganywhere.org/. Use of Gaming-
Anywhere in academic research is free of charge but
researchers and developers should follow the license
terms claimed in the binary and source packages.

4. SYSTEM ARCHITECTURE
The deployment scenario of GamingAnywhere is shown

in Figure 1. A user first logs into the system via a portal
server, which provides a list of available games to the user.
The user then selects a preferred game and requests to play
the game. Upon receipt of the request, the portal server
finds an available game server, launches the selected game
on the server, and returns the game server’s URL to the user.
Finally, the user connects to the game server and starts to
play. There is not too much to discuss for the portal server,
which is just like most Web-based services and provides only
a simple login and game selection user interface. If login and
game selection requests are sent from a customized client, it
does not even need a user interface. Actions can be sent as
REST-like [10, 14] requests via standard HTTP or HTTPS

Portal Servers Clients/Users

Game Selection

Game

Interaction

Game

Conguration

Game Servers

Figure 1: The deployment scenario of Gaming-

Anywhere.

protocols. Therefore, in this section we only focus on the
game server and the game client of GamingAnywhere.
Figure 2 shows the architecture of the game server and

the game client of GamingAnywhere. We define two types
of network flows in the architecture, the data flow and the
control flow. Whereas the data flow is used to stream audio
and video (A/V) frames from the server to the client, the
control flow runs in a reverse direction, being used to send
the user’s actions from the client to the server. The system
architecture of GamingAnywhere allows it to support any
types of games, including PC-based and Web-based games.
The game selected by a user runs on a game server. There is
an agent running along with the selected game on the same
server. The agent can be a stand-alone process or a thread
injected into the selected game. The choice depends on the
type of the game and how the game is implemented. The
agent has two major tasks. The first task is to capture the
A/V frames of the game, encode the frames using the chosen
codecs, and then deliver the encoded frames to the client via
the data flow. The second task of the agent is to interact
with the game. On receipt of the user’s actions from the
client, it must behave as the user and play with the game
by re-playing the received keyboard, mouse, joysticks, and
even gesture events. However, as there exist no standard
protocols for delivering users’ actions, we chose to design
and implement the transport protocol for user actions by
ourselves.
The client is basically a customized game console imple-

mented by combining an RTSP/RTP multimedia player and
a keyboard/mouse logger. The system architecture of Gam-
ingAnywhere allows observers1 by nature because the server
delivers encoded A/V frames using the standard RTSP and
RTP protocols. In this way, an observer can watch a game
play by simply accessing the corresponding game URL with
full-featured multimedia players, such as the VLC media
player [39], which are available on almost all OS’s and plat-
forms.

5. IMPLEMENTATION
Presently, the implementation of GamingAnywhere in-

cludes the server and the client, each of which contains

1In addition to playing a game themselves, hobbyists may
also like to watch how other gamers play the same game. An
observer can only watch how a game is played but cannot
be involved in the game.

Game console

Data Flow

Control Flow

Running the selected game

A
g

e
n

t

P
ro

ce
ss

/T
h

re
a

d

Game Server Game Client

Internet

Audio / Video

Encoder

RTSP / RTP / RTCP

Audio / Video

Capturer
Replay User Inputs

(Keyboard, Mouse, ...)

Decode Input Events

(Customized Protocol)
RTSP / RTP / RTCP

Audio / Video

Decoder

Encode Input Events

(Customized Protocol)

Audio / Video

Player
User Inputs

(Keyboard, Mouse, ...)

Figure 2: A modular view of GamingAnywhere

server and client.

a number of modules whose details of each module are
elaborated in this section. The implementation of Gam-
ingAnywhere depends on several external libraries includ-
ing libavcodec/libavformat [13], live555 [23], and SDL li-
brary [21]. The libavcodec/libavformat library is part of
the ffmpeg project, which is a package to record, convert,
and stream audio and video. We use this library to en-
code and decode the A/V frames on both the server and
the client. In addition, it is also used to handle the RTP
protocol at the server. The live555 library is a set of C++
libraries for multimedia streaming using open standard pro-
tocols (RTSP, RTP, RTCP, and SIP). We use this library
to handle RTSP/RTP protocols [31, 32] at the client. The
Simple DirectMedia Layer (SDL) library is a cross-platform
library designed to provide low-level access to audio, key-
board, mouse, joystick, 3D hardware via OpenGL and a 2D
video frame buffer. We use this library to render audio and
video at the client. All the above libraries have been ported
to a number of platforms, including Windows, Linux, OS X,
iOS, and Android.

5.1 GamingAnywhere Server
The relationships among server modules are shown in Fig-

ure 3. Some of the modules are implemented in separate
threads. When an agent is launched, its four modules, i.e.,
the RTSP server, audio source, video source, and input re-
player are launched as well. The RTSP server and the input
replayer modules are immediately started to wait for incom-
ing clients (starting from the path 1n and 1i in the figure).
The audio source and the video source modules are kept
idle after initialization. When a client is connected to the
RTSP server, the encoder threads are launched and an en-
coder must notify the corresponding source module that it
is ready to encode the captured frames. The source modules
then start to capture audio and video frames when one or
more encoders are ready to work. Encoded audio and video
frames are generated concurrently in real time. The data
flows of audio and video frame generations are depicted as
the paths from 1a to 5a and from 1v to 5v, respectively.
The details of each module are explained respectively in the
following subsections.

5.1.1 RTSP, RTP, and RTCP Server

The RTSP server thread is the first thread launched
in the agent. It accepts RTSP commands from a client,
launches encoders, and setups data flows for delivering en-

Audio
source

Desktop/Game

Video
source

Video
encoder

Audio
encoder

Audio
buffer

Video
buffer

(1a)
audio
capture

(1v)
video

capture

Threads

Shared buffers

(2a)
write audio

frames

(2v)
write a
video
frame

(3a)
wake up
encoder

(3v)
wake up
encoder

(4a)
read
audio

frames

(4v)
read a video
frame

(5a)
encode and
send

(5v)
encode and

send

Object owner

RTSP
server
thread

Data Flow Connections (RTSP/RTP/RTCP)

(1n)
handle
clients

Input
replayer

Control Flow Connections

(2i)
replay
input
events

(1i)
receive
input
events

Figure 3: The relationships among server modules, shared buffers, and network connections.

coded frames. The data flows can be conveyed by a single
network connection or multiple network connections depend-
ing on the preferred transport layer protocol, i.e., TCP or
UDP. In the case of TCP, encoded frames are delivered as
interleaved binary data in RTSP [32], hence necessitating
only one data flow network connection. Both RTSP com-
mands and RTP/RTCP packets are sent via the RTSP over
TCP connection established with a client. In the case of
UDP, encoded frames are delivered based on the RTP over
UDP protocol. Three network flows are thus required to ac-
complish the same task: In addition to the RTSP over TCP
connection, two RTP over UDP flows are used to deliver
encoded audio and video frames, respectively.
We implement the mechanisms for handling RTSP com-

mands and delivering interleaved binary data by ourselves,
while using the libavformat library to do the packetization
of RTP and RTCP packets. If encoded frames are delivered
as interleaved binary data, a raw RTP/RTCP packet can
be obtained by allocating a dynamic packet buffer and then
be sent as interleaved binary data. On the other hand, if
encoded frames are delivered via RTP over UDP, they are
sent directly to the client using libavformat.
The RTSP server thread exports a programming interface

for encoders to send encoded frames. When an encoder gen-
erates an encoded frame, it can send out the frame to the
client via the interface without knowing the details about
the underlying network connections.

5.1.2 Video Source

Capturing of game screens (frames) is platform-
dependent. We currently provide two implementations of
the video source module to capture the game screens in
real time. One implementation is called the desktop cap-
ture module, which captures the entire desktop screen at a
specified rate, and extracts the desired region when neces-
sary. Another implementation is called the API intercept
module, which intercepts a game’s graphics drawing func-
tion calls and captures the screen directly from the game’s
back buffer [25] immediately whenever the rendering of a
new game screen is completed.
Given a desired frame rate (commonly expressed in frame-

per-second, fps), the two implementations of the video
source module work in different ways. The desktop capture
module is triggered in a polling manner; that is, it actively
takes a screenshot of the desktop at a specified frequency.

For example, if the desired frame rate is 24 fps, the capture
interval will be 1/24 sec (≈ 41.7 ms). By using a high-
resolution timer, we can keep the rate of screen captures ap-
proximately equal to the desired frame rate. On the other
hand, the API intercept module works in an event-driven
manner. Whenever a game completes the rendering of an
updated screen in the back buffer, the API intercept module
will have an opportunity to capture the screen for stream-
ing. Because this module captures screens in an opportunis-
tic manner, we use a token bucket rate controller [35] to
decide whether the module should capture a screen in order
to achieve the desired streaming frame rate. For example,
assuming a game updates its screen 100 times per second
and the desired frame rate is 50 fps, the API intercept mod-
ule will only capture one game screen for every two screen
updates. In contrast, if the game’s frame rate is lower than
the desired rate, the module will re-use the last-captured
game screens to meet the desired streaming frame rate.

Each captured frame is associated with a timestamp,
which is a zero-based sequence number. Captured frames
along with their timestamps are stored in a shared buffer
owned by the video source module and shared with video
encoders. The video source module serves as the only
buffer writer, while the video encoders are all buffer readers.
Therefore, a reader-writer lock must be acquired every time
before accessing the shared buffer. Note that although only
one video encoder is illustrated in Figure 3, it is possible
to run multiple video encoders simultaneously depending on
the usage scenario. We discuss this design choice between a
single encoder and multiple encoders in Section 5.1.4.

At present, the desktop capture module is implemented
in Linux and Windows. We use the MIT-SHM extension for
the X Window system to capture the desktop on Linux and
use GDI to capture the desktop graphics onWindows. As for
the API intercept module, it currently supports DirectDraw
and Direct3D games by hooking DirectX APIs on Windows.
Both modules support captured frames of pixel formats in
RGBA, BGRA, and YUV420P, with a high extensibility to
incorporate other pixel formats for future needs.

5.1.3 Audio Source

Capturing of audio frames is platform-dependent as well.
In our implementation, we use the ALSA library and Win-
dows audio session API (WASAPI) to capture sound on
Linux and Windows, respectively. The audio source module

silence periodaudible period audible period

t0 t1

P1 P2 P3 P5 P6 P7 P8 P9 P10 P11

Audio Signal

Audio Packets (Frames)

P4

Figure 4: Sample audio signals that may cause the

frame discontinuity problem.

regularly captures audio frames (also called audio packets)
from an audio device (normally the default waveform output
device). The captured frames are copied by the audio source
module to a buffer shared with the encoder. The encoder
will be awakened each time an audio frame is generated to
encode the new frame. To simplify the programming inter-
face of GamingAnywhere, we require each sample of audio
frames to be stored as a 32-bit signed integer.
One issue that an audio source module must handle is

the frame discontinuity problem. When there is no appli-
cation generating any sound, the audio read function may
return either 1) an audio frame with all zeros, or 2) an er-
ror code indicating that no frames are currently available.
If the second case, an audio source module needs to still
emit silence audio frames to the encoder because encoders
normally expect continuous audio frames no matter whether
audible sound is present or not. Therefore, an audio source
module must emit silence audio frames in the second case
to resolve the frame discontinuity problem. We observed
that modern Windows games often play audio using WAS-
API, which suffers from the frame discontinuity problem.
Our WASAPI-based audio source module has overcome the
problem by carefully estimating the duration of silence peri-
ods and generating silence frames accordingly, as illustrated
in Figure 4. From the figure, the length of the silence frame
should ideally be t1 − t0; however, the estimated silence du-
ration may be slightly longer or shorter if the timer accuracy
is not sufficiently high.

5.1.4 Frame Encoding

Audio and video frames are encoded by two different en-
coder modules, which are launched when there is at least
one client connected to the game server. GamingAnywhere
currently supports two encoding modes: 1) one-encoder-for-
all and 2) one-encoder-each-client to support different usage
scenarios. In the one-encoder-for-all mode, the frames gen-
erated by a frame source are only read and encoded by one
encoder regardless of the number of observers2. Therefore,
a total of two encoders, one for video frames and another for
audio frames, are in charge of encoding tasks. The benefit
of this mode is better efficiency as the CPU usage does not
increase when there are more observers. All the video and
audio frames are encoded only once and the encoded frames
are delivered to the corresponding clients in a unicast man-
ner.
On the other hand, the one-encoder-each-client mode al-

2In the current design, there can be one player and unlimited
observers simultaneously in a game session.

locates a dedicated encoder for each client, either a player
or an observer. The benefit is that it is therefore possible to
use different encoding configurations, such as bit rate, res-
olution, and quality parameters, for different clients. How-
ever, the consumed CPU resources would increase propor-
tionally with the number of encoders. For example, in our
study, each x264 encoder with 1280x720 resolution and 24
fps increases the CPU utilization by nearly 10% on an Intel
2.66 GHz i5 CPU. In this way, a game server can only tol-
erate 10 observers at most when only one game instance is
running. Therefore, the tradeoff between the one-encoder-
for-all mode3 and one-encoder-each-client mode needs to be
seriously considered as it may have large performance im-
pacts on the system.

Presently, both the video and audio encoder modules are
implemented using the libavcodec library, which is part of
the ffmpeg project. The libavcodec library supports various
audio and video codecs and is completely written in the C
language. Therefore, GamingAnywhere can use any codec
supported by libavcodec. In addition, since the libavcodec
library is highly extensible, researchers can easily integrate
their own code into GamingAnywhere to evaluate its perfor-
mance in cloud gaming.

5.1.5 Input Handling

The input handling module is implemented as a separate
thread. This module has two major tasks: 1) to capture
input events on the client, and 2) to replay the events oc-
curring at the client on the game server.

Unlike audio and video frames, input events are delivered
via a separated connection, which can be TCP or UDP. Al-
though it is possible to reuse the RTSP connection for send-
ing input events from the client to the server, we decided not
to adopt this strategy for three reasons: 1) The delivery of
input events may be delayed due to other messages, such as
RTCP packets, sent via the same RTSP connection. 2) Data
delivery via RTSP connections incurs slightly longer delays
because RTSP is text-based and parsing text is relatively
time-consuming. 3) There is no such standard of embedding
input events in an RTSP connection. This means that we
will need to modify the RTSP library and inevitably make
the system more difficult to maintain.

The implementation of the input handling module is
intrinsically platform-dependent because the input event
structure is OS- and library-dependent. Currently Gaming-
Anywhere supports the three input formats of Windows, X
Window, and SDL. Upon the receipt of an input event4, the
input handling module first converts the received event into
the format required by the server and sends the event struc-
ture to the server. GamingAnywhere replays input events
using the SendInput function on Windows and the XTEST
extension on Linux. While the above replay functions work
quite well for most desktop and game applications, some
games adopt different approaches for capturing user inputs.
For example, the SendInput function on Windows does not
work for Batman and Limbo, which are two popular action
adventure games. In this case, GamingAnywhere can be
configured to use other input replay methods, such as hook-

3It is also possible to provide differential streaming qual-
ity for different clients in the one-encoder-for-all mode by
adopting scalable video codecs such as H.264/SVC.
4The capturing of input events on clients will be elaborated
in Section 5.2.3.

Game Interaction

Main
thread

Control Flow Connections

(1i)
receive
input
events

(2i)
send
input
events

SDL Rendering Input Events

Data Flow Connections

R
T

S
P

c
li
e

n
t

th
re

a
d

Video
buffer

Audio
buffer

Threads

Buffers

Object owner

(1r)
receive
encoded
A/V
frames

(2rv)
buffer

an
encoded

audio
frames

(2ra)
buffer
encoded
audio frames

(3rv)
decode and render

video frames

(3ra)
decode and render
audio frames
(callback)

Figure 5: The relationships among client modules,

shared buffers, and network connections.

ing the GetRawInputData function on Windows to “feed” in-
put events whenever the function is called by the games.

5.2 GamingAnywhere Client
The client is basically a remote desktop client that dis-

plays real-time game screens which are captured at the
server and delivered in the form of encoded audio and video
frames. The relationships among client modules are shown
in Figure 5. The GamingAnywhere client contains two
worker threads: one is used to handle user inputs (start-
ing from path 1i) and the other is used to render audio and
video frames (starting from path 1r). In this section, we di-
vide the discussion on the client design into three parts, i.e.,
the network protocols, the decoders, and input handling.

5.2.1 RTSP, RTP, and RTCP Clients

In the GamingAnywhere client, we use the live555 library
to handle the network communications. The live555 library
is entirely written in C++ with an event-driven design. We
take advantage of the class framework of live555 and derive
from the RTSPClient and MediaSink classes to register call-
back functions that handle network events. Once the RTSP
client has successfully set up audio and video sessions, we
create two sink classes to respectively handle the encoded
audio and video frames that are received from the server.
Both sink classes are inherited from the MediaSink class
and the implemented continuePlaying virtual function is
called when the RTSP client issues the PLAY command. The
continuePlaying function attempts to receive an encoded
frame from the server. When a frame is received success-
fully, the function triggers a callback function that puts the
frame in a buffer and decodes the video frame if possible.
The continuePlaying function will then be called again to
receive the next frame.

5.2.2 Frame Buffering and Decoding

To provide better gaming experience in terms of latency,
the video decoder currently does not buffer video frames at
all. In other words, the video buffer component in Figure 5
is simply used to buffer packets that are associated with the
latest video frame. Because live555 provides us with packet
payloads without an RTP header, we detect whether con-
secutive packets correspond to the same video frame based
on the marker bit [31] in each packet. That is, if a newly

received packet has a zero marker bit (indicating that it is
not the last packet associative with a video frame), it will
be appended into the buffer; otherwise, the decoder will de-
code a video frame based on all the packets currently in the
buffer, empty the buffer, and place the newly arrived packet
in the buffer. Although this zero-buffering strategy may lead
to inconsistency in video playback rate when network delays
are unstable [45], it reduces the input-response latency due
to video playout to a minimum level. We believe that this
design tradeoff can yield a overall better cloud gaming ex-
perience.

The way GamingAnywhere handles audio frames is differ-
ent from its handling of video frames. Upon the receipt of
audio frames, the RTSP client thread does not decode the
frames, but instead simply places all the received frames in
a shared buffer (implemented as a FIFO queue). This is
because the audio rendering of SDL is implemented using
an on-demand approach. That is, to play audio in SDL, a
callback function needs to be registered and it is called when-
ever SDL requires audio frames for playback. The memory
address m to fill audio frames and the number of required
audio frames n are passed as arguments to the callback func-
tion. The callback function retrieves the audio packets from
the shared buffer, decodes the packets, and fills the decoded
audio frames into the designated memory address m. Note
that the callback function must fill exactly n audio frames
into the specified memory address as requested. This should
not be a problem if the number of decoded frames is more
than requested. If not, the function must wait until there
are sufficient frames. We implement the waiting mechanism
for sufficient frames using a mutual exclusive lock (mutex).
If the RTSP client thread has received new audio frames,
it will append the frames to the buffer and also trigger the
callback function to read more frames.

5.2.3 Input Handling

The input handling module on the client has two major
tasks. One is to capture input events made by game players,
and the other is to send captured events to the server. When
an input event is captured, the event structure is sent to the
server directly. Nevertheless, the client still has to tell the
server the format and the length of a captured input event.

At present, GamingAnywhere supports the mechanism
for cross-platform SDL event capturing. In addition, on
certain platforms, such as Windows, we provide more so-
phisticated input capture mechanisms to cover games with
special input mechanisms and devices. Specifically, we
use the SetWindowsHookEx function with WH_KEYBOARD_LL

and WH_MOUSE_LL hooks to intercept low-level keyboard and
mouse events. By so doing we can perfectly mimic every
move of the players’ inputs on the game server.

6. PERFORMANCE EVALUATION
In this section, we evaluate GamingAnywhere via exten-

sive experiments, and compare its performance against two
well-known cloud gaming systems.

6.1 Setup
We have set up a GamingAnywhere testbed in our lab.

We conduct the experiments using Windows 7 desktops
with Intel 2.67 GHz i7 processors if not otherwise specified.
For evaluation purposes, we compare the performance of
GamingAnywhere against OnLive [29] and StreamMyGame

FreeBSD with

Dummynet

LAN

OnLive

Server

Internet

LAN

GamingAnywhere

and

StreamMyGame

Server

Client

Router

Figure 6: The network topology of our experiments.

(SMG) [34]. Figure 6 illustrates the experimental setup,
which consists of a server, a client, and a router. The OnLive
server resides in OnLive’s data centers, while the Gaming-
Anywhere and SMG servers are installed on our own PCs.
More specifically, the OnLive client connects to the OnLive
server over the Internet, while the GamingAnywhere and
SMG clients connect to their servers via a LAN. To evalu-
ate the performance of the cloud gaming systems under di-
verse network conditions, we add a FreeBSD router between
the client and server, and run dummynet on it to inject con-
straints of delays, packet losses, and network bandwidths.
Because the OnLive server is outside our LAN, the qual-

ity of the network path between our OnLive client and the
server might affect our evaluations. However, according to
our observations, the quality of the path was consistently
good throughout the experiments. The network delay of the
path was around 130 ms with few fluctuations. Further-
more, the packet loss rates were measured to be less than
10−6 when receiving OnLive streams at the recommended
5 Mbps. Therefore, the path between the OnLive server
and our client can be considered as a communication chan-
nel with sufficient bandwidth, zero packet loss rate, and a
constant 130 ms latency.
Since the performance of cloud gaming systems may be

game-dependent, we consider games from three popular cat-
egories: action adventure, first-person shooter, and real-time
strategy. We pick a representative game from each category,
and briefly introduce them in the following.

• LEGO Batman: The Videogame (Batman) [2] is an
action-adventure game, created by Traveller’s Tales in
2008. All the interactive objects in this game are made
of Lego bricks. In this game, players control the char-
acters to fight enemies and solve puzzles from a third-
person perspective.

• F.E.A.R. 2: Project Origin (FEAR) [1] is a first-
person shooter game, developed by Monolith Produc-
tions in 2009. The combat scenes are designed to be
as close to those in real life as possible. In this game,
players have great freedom to interact with the envi-
ronments, e.g., they can flip over a desk to take cover.

• Warhammer 40,000: Dawn of War II (DOW) [3] is a
real-time strategy game developed by Relic Entertain-
ment in 2009. In the campaign mode, players control
squads to fight against enemies and destroy the build-
ings. In the multiplayer mode, up to 8 players play
matches on the same map to complete a mission, such
as holding specific positions.

Modern video encoders strive to achieve the highest video

quality with the smallest bit rate by applying complex cod-
ing techniques. However, overly-complex coding techniques
are not feasible for real-time videos given their lengthy en-
coding time. As such, we empirically study the tradeoff
among the bit rate, video quality, and frame complexity us-
ing x264. More specifically, we apply the real-time encoding
parameters summarized in Appendix A, and exercise a wide
spectrum of other encoding parameters. We then analyze
the resulting video quality and encoding time. Based on our
analysis, we recommend the following x264 encoding param-
eters:

--profile main --preset faster --tune zerolatency

--bitrate $r --ref 1 --me dia --merange 16

--intra-refresh --keyint 48 --sliced-threads

--slices 4 --threads 4 --input-res 1280x720,

where $r is the encoding rate.
We configure the GamingAnywhere server to use the

above-mentioned encoding parameters, and we set the en-
coding bit rate to be 3 Mbps. For a fair comparison, all
games are streamed at a resolution of 720p. Whereas we
configure GamingAnywhere and OnLive to stream at 50 fps,
StreamMyGame only supports streaming at 25 fps. We de-
sign the experiments to evaluate the three gaming systems
from two critical aspects: responsiveness and video quality.
We also conduct experiments to quantify the network loads
incurred by different cloud gaming systems. The details of
the experimental designs and results are given in the rest of
this section.

6.2 Responsiveness
We define response delay (RD) to be the time differ-

ence between a user submitting a command and the cor-
responding in-game action appearing on the screen. Stud-
ies [8, 17, 46] report that players of various game categories
can tolerate different degrees of RD; for example, it was ob-
served that first-person shooter game players demand for
less than 100 ms RD [8]. However, since measuring RD
in cloud gaming systems is not an easy task (as discussed
in Section 2.2), we adopt the RD measurement procedure
proposed in [5], in which the RD is divided into three com-
ponents:

• Processing delay (PD) is the time required for the
server to receive and process a player’s command, and
to encode and transmit the corresponding frame to
that client.

• Playout delay (OD) is the time required for the client
to receive, decode, and render a frame on the display.

• Network delay (ND) is the time required for a round
of data exchange between the server and client. ND is
also known as round-trip time (RTT).

Therefore, we have RD = PD +OD + ND .
ND can be measured using probing packets, e.g., in ICMP

protocol, and is not controllable by cloud gaming systems.
Moreover, ND in a LAN is much smaller than that in the
Internet. Therefore, for a fair comparison among the cloud
gaming systems, we exclude ND from RD measurements in
the rest of this paper. Measuring PD (at the server) and OD
(at the client) is much more challenging, because they occur
internally in the cloud gaming systems, which may be closed
and proprietary. The procedure detailed in [5] measures the

P
ro

c
e
s
s
in

g
 d

e
la

y
 +

 P
la

y
o
u
t

d
e
la

y
 (

m
s
)

0
1
0
0

2
0
0

3
0
0

4
0
0

GA OnLive SMG

27
12

34

14

32

14
118

24

110

31

191

21

350

26

362

18

365

21Processing delay

Playout delay

Batman

FEAR

DOW

Figure 7: Response delays of GamingAnywhere, On-

Live, and StreamMyGame.

PD and OD using external probes only, and thus works for
all the considered cloud gaming systems.
For GamingAnywhere, we further divide the PD and OD

into subcomponents by instrumenting the server and client.
More specifically, PD is divided into: (i) memory copy,
which is the time for copying a raw image out of the games,
(ii) format conversion, which is the time for color-space con-
version, (iii) video encoding, which is the time for video com-
pression, and (iv) packetization, which is the time for seg-
menting each frame into one or multiple packets. OD is
divided into: (i) frame buffering, which is the time for re-
ceiving all the packets belonging to the current frame (ii)
video decoding, which is the time for video decompression,
and (iii) screen rendering, which is the time for displaying
the decoded frame.
Results. Figure 7 reports the average PD (server) and

OD (client) achieved by the considered cloud gaming sys-
tems. From this figure, we make several observations. First,
the OD is small, ≤ 31 ms, for all cloud gaming systems and
considered games. This reveals that all the decoders are effi-
cient, and the decoding time of different games does not fluc-
tuate too much. Second, GamingAnywhere achieves a much
smaller PD, at most 34 ms, than OnLive and SMG, which
are observed to be as high as 191 and 365 ms, respectively.
This demonstrates the efficiency of the proposed Gaming-
Anywhere: the PDs of OnLive and SMG are 3+ and 10+
times longer than that of GamingAnywhere. Last, among
the three systems, only GamingAnywhere achieves sub-100
ms RD, and may satisfy the stringent delay requirements of
networked games [8].
Figure 8 presents the decomposed delay subcomponents of

PD and OD. This figure reveals that the GamingAnywhere
server and client are well-tuned, in the sense that all the
steps in the pipeline are fairly efficient. Even for the most
time-consuming video encoding (at the server) and video
rendering (at the client), each frame is finished in at most
16 and 7 ms on average. Such a low delay contributes to the
superior RD of GamingAnywhere, compared to the other
well-known cloud gaming systems.

6.3 Network Loads
We next quantify the network loads incurred by Gaming-

Anywhere. In particular, we recruit an experienced gamer,
and ask him to play each game using different cloud gaming
systems. Every game session lasts for 10 minutes, and the

P
ro

c
e
s
s
in

g
 D

e
la

y
 (

m
s
)

0
1
0

2
0

3
0

4
0

5
0

6

5

14

2

10

6

16

2

11

5

14

2

Batman FEAR DOW

Packetization

Video encoding

Format conversion

Memory copy

Batman FEAR DOW

P
la

y
o
u
t

D
e
la

y
 (

m
s
)

0
5

1
0

1
5

2
0

1

6

5

2

6

6

1

6

7

Screen rendering

Video decoding

Frame buffering

Figure 8: Delay decomposition of Gaming-

Anywhere.

network packets are captured by Wireshark. For a fair com-
parison, the player is asked to follow two guidelines. First,
he shall visit as many areas as possible and fight the oppo-
nents as in normal game plays. Second, he shall repeat his
actions and trajectories as much as possible.

Results. Figure 9 plots the uplink and downlink traffic
characteristics, including bit rate, packet rate, and payload
length. The bar charts show the average values with 95%
confidence intervals. Figures 9(a)–9(c) reveal that the pro-
posed GamingAnywhere incurs a much lower uplink traffic
loads, compared to OnLive and SMG. The only exception
is that, with Batman, SMG incurs lower uplink packet rate
(Figure 9(b)). However, SMG also produces a larger uplink
payload size (Figure 9(c)), which leads to a higher uplink
bit rate than that of GamingAnywhere (Fig 9(a)). Fig-
ures 9(d)–9(f) reveal that the downlink bit rates of OnLive
are between 3–5 Mbps, while those of SMG are between
10–13 Mbps. This finding indicates that the compression
algorithm employed by OnLive achieves up to a 4.33 times
higher compression rate, compared to that of SMG.

We can make another observation on Figure 9(d): Gam-
ingAnywhere incurs a download bit rate ≤ 3 Mbps, which
is also much lower than that of SMG. However, given that
we set the encoding bit rate at 3 Mbps, the download bit
rate should never be smaller than that. We took a closer
look and found that, with GamingAnywhere, only Batman
achieves 50 fps; FEAR and DOW only achieve 35–42 fps,
which leads to lower download bit rate and may result in
irregular playouts. Our in-depth analysis shows that, un-
like Batman, both FEAR and DOW use multisampling sur-
faces, which cannot be locked for memory copy operations.
More specifically, an additional non-multisampling surface
and an extra copy operation are required for FEAR and
DOW, which in turn hurts the achieved frame rates. As one
of our future tasks, we will optimize the multi-threaded de-
sign of the GamingAnywhere server, so as to minimize the
synchronization overhead.

GA OnLive SMG

U
p
lin

k
 B

it
 R

a
te

 (
M

b
p
s
)

0
0
.0

2
0
.0

4
0
.0

6

(a)

GA OnLive SMG

U
p
lin

k
 P

a
c
k
e
t
R

a
te

 (
p
k
t/
s
e
c
)

0
2
0

4
0

6
0

8
0

(b)

GA OnLive SMG

U
p
lin

k
 P

a
y
lo

a
d
 S

iz
e
 (

b
y
te

s
)

0
3
0

6
0

9
0

1
2
0

(c)

GA OnLive SMG

D
o
w

n
lin

k
 B

it
 R

a
te

 (
M

b
p
s
)

0
3

6
9

1
2

1
5

(d)

Batman

FEAR

DOW

GA OnLive SMG

D
o
w

n
lin

k
 P

a
c
k
e
t
R

a
te

 (
p
k
t/
s
e
c
)

0
3
0
0

6
0
0

9
0
0

1
2
0
0

(e)

GA OnLive SMG

D
o
w

n
lin

k
 P

a
y
lo

a
d
 S

iz
e
 (

b
y
te

s
)

0
5
0
0

1
0
0
0

1
5
0
0

(f)

Figure 9: Network loads incurred by the considered cloud gaming systems.

In summary, we have shown that GamingAnywhere incurs
much lower network traffic loads. Even though the current
GamingAnywhere implementation only achieves 35–42 fps
for games using multisampling surfaces, such a frame rate is
still much higher than the 25 fps of SMG. On the other hand
the slightly lower achieved frame rate may affect the fairness
of video quality comparisons between GamingAnywhere and
OnLive. Therefore, in the rest of this section, we only report
results from Batman.

6.4 Video Quality
Video streaming quality directly affects gaming experi-

ence, and network conditions are the keys for high-quality
streaming. In this light, we use dummynet to control three
network condition metrics: network delay (ND), packet loss
rate, and network bandwidth. We vary ND between 0–600
ms, packet loss rate between 0–10%, and bandwidth 1–6
Mbps in our experiments. We also include experiments with
unlimited bandwidth. For OnLive, the ND in the Internet is
already 130 ms and thus we cannot report the results from
zero ND. Two video quality metrics, PSNR [40, p. 29] and
Structural Similarity (SSIM) [41], are adopted. We report
the average PSNR and SSIM values of the Y-component.
Results. Figures 10 and 11 present the PSNR and SSIM

values, respectively. We make four observations on these
two figures. First, ND does not affect the video quality too
much (Figures 10(a) and 11(a)). Second, GamingAnywhere
achieves much higher video quality than OnLive and SMG:
up to 3 dB and 0.03, and 19 dB and 0.15 gaps are observed,
respectively. Third, GamingAnywhere suffers from quality
drops when packet loss rate is nontrivial, as illustrated in
Figures 10(b) and 11(b). This can be attributed to the miss-
ing error resilience mechanism in GamingAnywhere. Nev-

ertheless, high packet loss rates are less common in modern
networks. Last, Figures 10(c) and 11(c) show that the video
quality of GamingAnywhere suddenly drops when the band-
width is smaller than the encoding bit rate of 3 Mbps. A
potential future work to address this is to add a rate adap-
tation heuristic to dynamically adjust the encoding bit rate,
in order to utilize all the available bandwidth without over-
loading the networks.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented GamingAnywhere, which is

the first open cloud gaming system designed to be open,
extensible, portable, and fully configurable. Through ex-
tensive experiments, we have shown that GamingAnywhere
significantly outperforms two well-known, commercial, cloud
gaming systems: OnLive and StreamMyGame. Compared
to GamingAnywhere, for example, OnLive and Stream-
MyGame suffer from up to 3 and 10 times higher process-
ing delays, as well as 3 dB and 19 dB lower video qual-
ity, respectively. GamingAnywhere is also efficient: it in-
curs lower network loads in both uplink and downlink di-
rections. Given that GamingAnywhere is open, cloud game
developers, cloud service providers, system researchers, and
individual users may use it to set up a complete cloud
gaming testbed. GamingAnywhere in publicly available at
http://gaminganywhere.org. We hope that the release of
GamingAnywhere will stimulate more research innovations
on cloud gaming systems, or multimedia streaming applica-
tions in general.

We are actively enhancing GamingAnywhere in several di-
rections. First, we strive to further reduce the delay at the
GamingAnywhere server by minimizing the synchronization

GA OnLive SMG

Network Delay

P
S

N
R

 (
d

B
)

0
1

0
2

0
3

0
4

0
5

0

(a)

0 ms

150 ms

300 ms

450 ms

600 ms

(a)

GA OnLive SMG

Packet Loss

P
S

N
R

 (
d

B
)

0
1

0
2

0
3

0
4

0
5

0

(b)

0%

2.5%

5%

7.5%

10%

GA OnLive SMG

Bandwidth

P
S

N
R

 (
d

B
)

0
1

0
2

0
3

0
4

0
5

0

(c)

Unlimited

6 Mbps

4 Mbps

2 Mbps

1 Mbps

Figure 10: Achieved video quality in PSNR under different network conditions.

GA OnLive SMG

Network Delay

S
S

IM

(a)

0
.5

0
.6

0
.7

0
.8

0
.9

1

0 ms

150 ms

300 ms

450 ms

600 ms

(a)

GA OnLive SMG

Packet Loss

S
S

IM

(b)

0
.5

0
.6

0
.7

0
.8

0
.9

1

0%

2.5%

5%

7.5%

10%

GA OnLive SMG

Bandwidth

S
S

IM

(c)

0
.5

0
.6

0
.7

0
.8

0
.9

1

Unlimited
6 Mbps
4 Mbps

2 Mbps
1 Mbps

Figure 11: Achieved video quality in SSIM under different network conditions.

overhead. This will allow us to increase the achieved frame
rate. Second, we are designing a practical rate control algo-
rithm for GamingAnywhere, which may not be very useful in
resourceful LANs, but is critical for remote players. Third,
we are considering adding error resilience mechanisms to
GamingAnywhere, in order to cope with packet loss due to,
e.g., network congestion, hardware failures, and misconfig-
ured routers.

References
[1] F.E.A.R. 2: Project Origin, November 2012. http://www.

whatisfear.com/.
[2] LEGO Batman: The Videogame, November 2012. http:

//games.kidswb.com/official-site/lego-batman/.
[3] Warhammer 40,000: Dawn of War II, November 2012. http:

//www.dawnofwar2.com/.
[4] Y.-C. Chang, P.-H. Tseng, K.-T. Chen, and C.-L. Lei. Un-

derstanding the performance of thin-client gaming. In Pro-
ceedings of IEEE CQR 2011, May 2011.

[5] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and
C.-L. Lei. Measuring the latency of cloud gaming systems.
In Proceedings of ACM Multimedia 2011, Nov 2011.

[6] Y. Chen, C. Chang, and W. Ma. Asynchronous rendering.

In Proc. of ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games (I3D’10), Washington, DC, February
2010.

[7] S. Choy, B. Wong, G. Simon, and C. Rosenberg. The brewing
storm in cloud gaming: A measurement study on cloud to
end-user latency. In Proceedings of IEEE/ACM NetGames
2012, Oct 2012.

[8] M. Claypool and K. Claypool. Latency and player actions in
online games. Communications of the ACM, 49(11):40–45,
November 2006.

[9] Cloud gaming adoption is accelerating . . . and fast!,
July 2012. http://www.nttcom.tv/2012/07/09/
cloud-gaming-adoption-is-acceleratingand-fast/.

[10] R. L. Costello. Building web services the rest way. xFront -
Tutorial and Articles on XML and Web Technologies, 2007.
http://www.xfront.com/REST-Web-Services.html.

[11] Distribution and monetization strategies to in-
crease revenues from cloud gaming, July 2012.
http://www.cgconfusa.com/report/documents/
Content-5minCloudGamingReportHighlights.pdf.

[12] P. Eisert and P. Fechteler. Low delay streaming of computer
graphics. In Proc. IEEE ICIP 2008, October 2008.

[13] FFmpeg project. ffmpeg. http://ffmpeg.org/.
[14] R. T. Fielding. Architectural Styles and the Design of

Network-based Software Architectures. PhD thesis, Univer-

sity of California, Irvine, 2000.
[15] Gaikai web page, July 2012. http://www.gaikai.com/.
[16] F. Giesen, R. Schnabel, and R. Klein. Augmented com-

pression for server-side rendering. In Proc. of Interna-
tional Fall Workshop on Vision, Modeling, and Visualiza-
tion (VMV’08), October 2008.

[17] T. Henderson. The Effects of Relative Delay in Networked
Games. PhD thesis, Department of Computer Science, Uni-
versity of London, February 2003.

[18] O. Holthe, O. Mogstad, and L. Ronningen. Geelix LiveG-
ames: Remote playing of video games. In Proc. of
IEEE Consumer Communications and Networking Confer-
ence (CCNC’09), Las Vegas, NV, January 2009.

[19] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David,
J. Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari,
P. Perala, A. Gloria, and C. Bouras. Platform for dis-
tributed 3D gaming. International Journal of Computer
Games Technology, 2009:1:1–1:15, January 2009.

[20] A. Lai and J. Nieh. On the performance of wide-area thin-
client computing. ACM Transactions on Computer Systems,
24(2):175–209, May 2006.

[21] S. Lantinga. Simple DirectMedia Layer. http://www.
libsdl.org/.

[22] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei. Are all
games equally cloud-gaming-friendly? an electromyographic
approach. In Proceedings of IEEE/ACM NetGames 2012,
Oct 2012.

[23] I. Live Networks. LIVE555 streaming media. http://
live555.com/liveMedia/.

[24] LogMeIn web page, July 2012. https://secure.logmein.
com/.

[25] Microsoft. Flipping surfaces (Direct3D 9). Win-
dows Dev Center - Desktop, September 2012.
http://msdn.microsoft.com/en-us/library/windows/
desktop/bb173393%28v=vs.85%29.aspx.

[26] J. Nieh, S. Yang, and N. Novik. Measuring thin-client perfor-
mance using slow-motion benchmarking. ACM Transactions
on Computer Systems, 21(1):87–115, February 2003.

[27] Online sales expected to pass retail software sales in 2013,
September 2011. http://www.dfcint.com/wp/?p=311.

[28] OnLive crushed by high infrastructure bills, August
2012. http://www.computerworld.com/s/article/9230376/
OnLive_crushed_by_high_infrastructure_bills.

[29] Onlive web page, July 2012. http://www.onlive.com/.
[30] K. Packard and J. Gettys. X window system network perfor-

mance. In Proc. of USENIX Annual Technical Conference
(ATC’03), pages 206–218, San Antonio, TX, June 2003.

[31] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
Rtp: A transport protocol for real-time applications. RFC
3550 (Standard), July 2003. http://www.ietf.org/rfc/
rfc3550.txt.

[32] H. Schulzrinne, A. Rao, and R. Lanphier. Real time stream-
ing protocol (rtsp). RFC 2326 (Proposed Standard), April
1998. http://www.ietf.org/rfc/rfc2326.txt.

[33] S. Shi, C. Hsu, K. Nahrstedt, and R. Campbell. Using graph-
ics rendering contexts to enhance the real-time video coding
for mobile cloud gaming. In Proc. of ACM Multimedia’11,
pages 103–112, November 2011.

[34] Streammygame web page, July 2012. http://streammygame.
com/.

[35] A. S. Tanenbaum. Computer Networks. Prentice Hall Pro-
fessional Technical Reference, 4th edition, 2002.

[36] TeamViewer web page, July 2012. http://www.teamviewer.
com.

[37] N. Tolia, D. Andersen, and M. Satyanarayanan. Quantifying
interactive user experience on thin clients. IEEE Computer,
39(3):46–52, March 2006.

[38] UltraVNC web page, July 2012. http://www.uvnc.com/.
[39] VideoLAN. VLC media player. Official page for VLC

media player, the Open Source video framework! http:
//www.videolan.org/vlc/.

[40] Y. Wang, J. Ostermann, and Y. Zhang. Video Processing
and Communications. Prentice Hall, 2001.

[41] Z. Wang, L. Lu, and A. Bovik. Video quality assessment
based on structural distortion measurement. Signal Process-
ing: Image Communication, 19(2):121–132, February 2004.

[42] D. Winter, P. Simoens, L. Deboosere, F. Turck, J. Moreau,
B. Dhoedt, and P. Demeester. A hybrid thin-client protocol
for multimedia streaming and interactive gaming applica-
tions. In Proc. of ACM NOSSDAV 2006, Newport, RI, May
2006.

[43] A. Wong and M. Seltzer. Evaluating Windows NT terminal
server performance. In Proc. of USENIX Windows NT Sym-
posium (WINSYM’99), pages 145–154, Seattle, WA, July
1999.

[44] x264 web page, July 2012. http://www.videolan.org/
developers/x264.html.

[45] Y. Xu, C. Yu, J. Li, and Y. Liu. Video telephony for
end-consumers: Measurement study of Google+, iChat, and
Skype. In Proceedings of Internet Measurement Conference
(IMC 2012), Nov 2012.

[46] S. Zander, I. Leeder, and G. Armitage. Achieving fairness
in multiplayer network games through automated latency
balancing. In Proc. of ACM SIGCHI ACE 2005, pages 117–
124, Valencia, Spain, June 2005.

APPENDIX

A. REAL-TIME ENCODING PARAME-

TERS FOR X264
Real-time video encoding requires some coding tools, but

prohibits some others. We briefly present the most critical
real-time encoding parameters dictated by x264 in the fol-
lowing. First, we do not have the luxury to use bi-directional
(B) frames, which lead to dependency on future frames, and
may result in additional latency. We also need to turn
off the x264 lookahead buffers, which are used to deter-
mine the frame type (I, P, or B) and facilitate frame-level
multi-threading. These can be done by a convenient flag
--tune zerolatency of x264.

Second, because frame-level multi-threading inherently re-
sults in additional latency, we need to enable slice-level
multi-threading, in order to leverage the computation power
provided by multi-core CPUs. Slices are essentially dis-
joint regions extracted from each video frame. Slice-level
multi-threading cuts each frame into multiple slices, and al-
locates a thread to encode each slice. Regarding x264, it
supports: (i) --sliced-threads to enable slice-level multi-
threading, (ii) --slices to specify the number of slices, and
(iii) --threads to control the number of threads.

Third, like many video streaming systems, Gaming-
Anywhere is sensitive to packet losses. Packet losses not only
result in video quality degradation in the current frames,
but the imperfect reconstruction also leads to error propa-
gation. One way to limit error propagation is to choose a
small group-of-picture (GoP) size. This approach has two
drawbacks: (i) rate fluctuations caused by the larger size
of I frames and (ii) noticeable artifacts when losing an I
frame. A better solution is to employ intra refresh, which
distributes intra-coded macroblocks over multiple frames in
a GoP. More specifically, each frame consists of a column of
intra-coded macroblocks, and this intra-coded column moves
along the time. Intra refresh is allowed by x264 via the flag
--intra-refresh, and the GoP size is set by --keyint.

